Fundamentals of StreetPave Software

A presentation for promotion professionals by the

American Concrete
Pavement Association
Skokie, III.
and
National Ready Mixed
Concrete Association
Silver Spring, Md.

Introduction

Objective

Provide promotion professionals with a resource to guide and assist engineers in using StreetPave™ for streets and roads design.

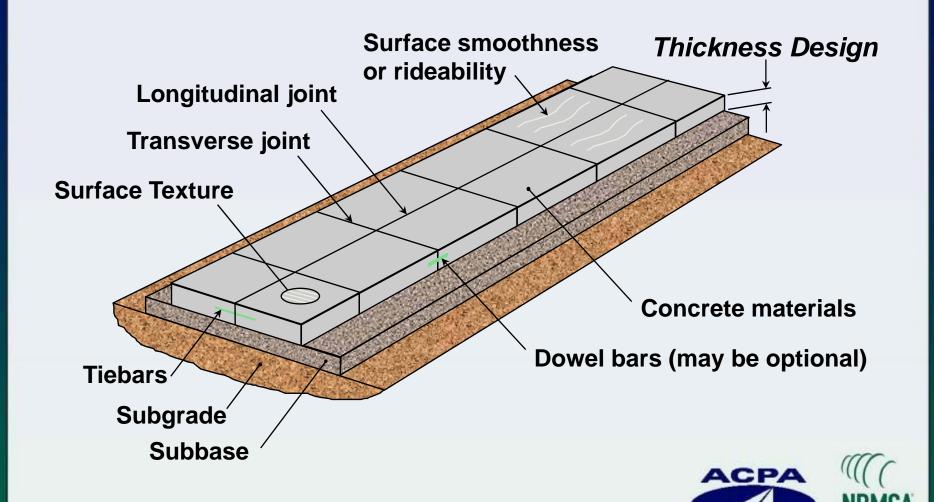
Presentation Overview

- Basic pavement design principles.
- StreetPave fundamentals.
- Factors affecting pavement design.
- Framework for pavement design optimization.

Presentation Goals

- Understand relationship between design features, costs, and performance.
- Establish framework for assisting customers in pavement type selection.
- Establish framework for assisting customers in optimized designs.

Basic Pavement Design Principles



Some Basic Principles

- Concrete pavements are engineered structures and so, must be designed, not simply placed.
- Pavement design is about more than just meeting specs; designers have the latitude to change a wide range of features.
- Traffic, type of facility, climate, etc. are among variables influencing design and costs.

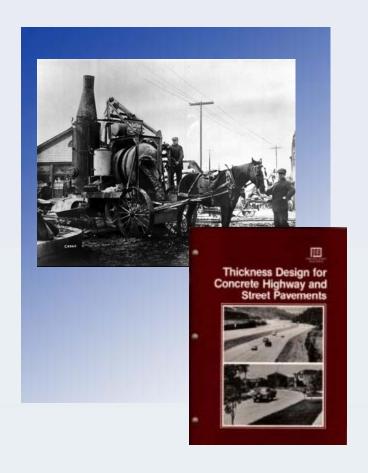
Streets and Roads Thickness Design

Understanding Design Optimization

- Design optimization is the balance of performance features and costs.
- StreetPave allows designer to vary project-specific "inputs" to achieve optimized design.

Understanding Design Optimization

- Design optimization involves adjusting variables to:
 - Achieve long life (durability),
 - Reduce initial costs,
 - Minimize maintenance and rehabilitation costs, and/or
 - Enhance sustainability.



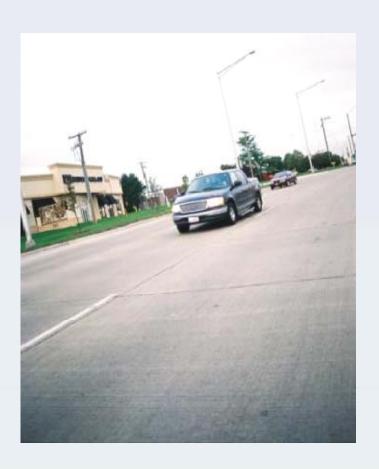
StreetPave Fundamentals

Historical Basis for StreetPave

- PCA's thickness design methodology originally published in 1933
- Updated in 1951, 1966, and again in 1984
- PCA developed PCAPAV program for iterative thickness design (latest version 1990)

StreetPave Design Software

- Pavement design tool geared primarily to streets and roads.
- Based on the PCA's pavement thickness design methodology.
- Used for both new and existing and new pavement design
- StreetPave will analyze design constraints & requirements, pavement properties, and traffic characteristics.


StreetPave Capabilities

- Provides a real-world analysis of individual or combined design features.
- Allows Life cycle cost analysis (LCCA) to compare "hard costs" (if cost & performance data available).
- Considers non-monetary factors.
- Can be used for overlays.

StreetPave Capabilities

For a new concrete pavement analysis,
StreetPave will output a design recommendation for concrete thickness, dowel bar use, and maximum transverse joint spacing.

StreetPave Capabilities

For existing concrete pavements, StreetPave will output the theoretical year in which the pavement will fail, along with total erosion and fatigue projections.

Factors Affecting Pavement Design

Understanding Design Variables

- Pavement design inputs can be broadly classified as one of the following:
 - Site condition inputs (fixed, cannot optimize)
 - Traffic
 - Environmental conditions
 - Subgrade support?
 - Project specific variables (variable, can be optimized)
 - Concrete strength
 - Load transfer
 - Others depending on design method used

Design Life

- Commonly 20 to 35 years.
- Shorter or longer period may be economically justified.
- High-performance concrete pavements:
 - Long-life pavements
 - Special haul road (to be used for only a few years)
 - Crossovers
 - Temporary lanes

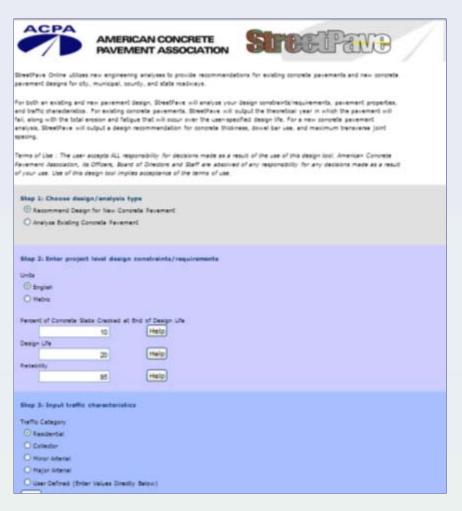
Levels of Reliability

Functional Classification of Roadway	Recommended Reliability			
	Urban	Rural		
Interstates, Freeways, and Tollways	85 - 99	80 – 99		
Principal Arterials	80 - 99	75 – 95		
Collectors	80 - 95	75 – 95		
Residential & Local Roads	50 - 80	50 – 80		

Failure Criteria (Slab Cracking)

Roadway Type	Recommended Percent of Slabs Cracked at End of Design Life
(Default)	15%
Interstate Highways, Expressways, Tollways, Turnpikes	5%
State Roads, Arterials	10%
Collectors, County Roads	15%
Residential Streets	25%

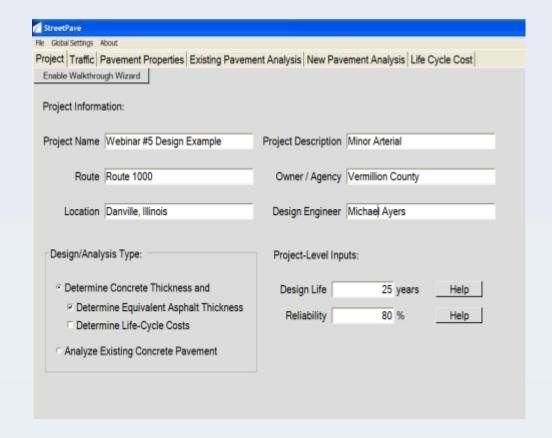
Framework for Pavement Design Optimization


Global Inputs in StreetPave

- Project information
- Design life
- Reliability*
- Failure criteria*
 - Terminal serviceability
 - Percent cracked slabs

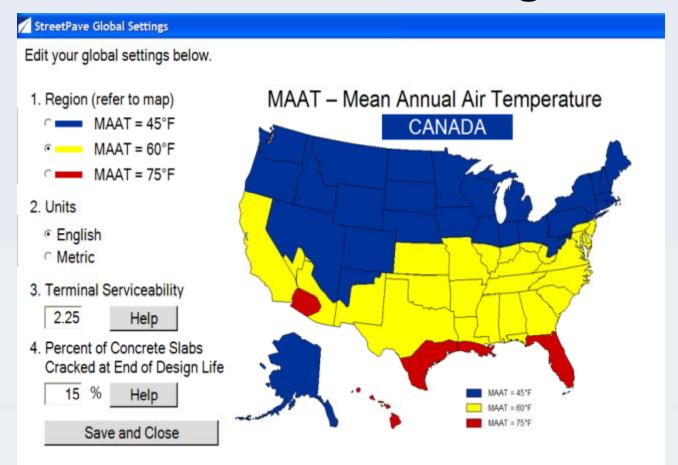
*Should be selected based on policy and experience.

StreetPave Input Examples



StreetPave web version

StreetPave Input Examples


First screen of walkthrough wizard

Global Settings

Combined Effects: Reliability & Failure

Table 5. Typical Values of Reliability and Percent Cracking

Street classification	Specified reliability	Percent cracking	Average percent cracking
Light residential	75%	15%	7.5%
Residential	80%	15%	6%
Collector	85%	10%	3%
Minor arterial	90%	10%	2%
Major arterial	95%	5%	0.5%

Average percent cracking = (100 - User-specified reliability) * Percent cracking / 50.

Site Condition Inputs in StreetPave

- Fixed variables for specific projects and locations
 - Traffic category
 - Total number of lanes
 - Directional distribution
 - Design lane distribution
 - ADTT or ADT plus percentage of trucks
 - Truck traffic growth
 - Subgrade support value (k-value)

Traffic Inputs

oject Traffic Pavement Properties Existing Pavement Analysis New Pavement	Traffic Category: Axie load, kips	Minor Arterial Axles / 1000 trucks
Teeffic colones	Single Axles	
Traffic category Help	30	0.45
Residential	28	0.85
Hediaciniai	26	1.78
Collector	24	5.21
Concolor	22	7.85
Minor Arterial	20	16.33
111111111111111111111111111111111111111	16	25.15 31.82
○ Major Arterial	14	47.73
	12	182.02
User Defined	Tandem Axles	102.02
	52	1,19
	48	2.91
Total Number of Lanes 4 ▼	44	8.01
	40	21.31
Directional Distribution 50 % Help	36	56.25
Directional Distribution 50 % Treip	32	103.63
	28	121.22
Design Lane Distribution 90 % Help	24	72.54
	20	85.94
	16	99.34
Help	Tridem Axles (Us	er Defined Only)
ADTT (average daily truck traffic, two-way) 750	70	0
	64	0
ADT (average daily traffic, two-way)	58	0
	52	0
% trucks	46	0
	40	0
	34	0
Truck traffic growth 2 % per year	28	0
- 10 bot Jon	22	0
	16	0

Street Classification and Traffic

- Comprehensive traffic studies have shown:
 "Streets of similar character have essentially the same traffic densities and axle load intensities."
- StreetPave has divided SLR pavements into six different classifications.
- Each classification includes:
 - Traffic volumes.
 - Types of vehicles.
 - Maximum axle loadings.

Street Classifications

Street Class	Description	Two-way Average Daily Traffic (ADT)	Two-way Average Daily Truck Traffic (ADTT)	Typical Range of Slab Thickness
Light Residential	Short streets in subdivisions and similar residential areas – often not through-streets.	Less than 200	2-4	4.0 - 5.0 in. (100-125 mm)
Residential	Through-streets in subdivisions and similar residential areas that occasionally carry a heavy vehicle (truck or bus).	200-1,000	10-50	5.0 - 7.0 in. (125-175 mm)
Collector	Streets that collect traffic from several residential subdivisions, and that may serve buses and trucks.	1,000-8,000	50-500	5.5 - 9.0 in. (135-225 mm)

Street Classifications

... Continued

Street Class	Description	Two-way Average Daily Traffic (ADT)	Two-way Average Daily Truck Traffic (ADTT)	Typical Range of Slab Thickness
Business	Streets that provide access to shopping and urban central business districts.	11,000- 17,000	400-700	6.0 - 9.0 in. (150-225 mm)
Industrial	Streets that provide access to industrial areas or parks, and typically carry heavier trucks than the business class.	2,000-4,000	300-800	7.0 - 10.5 in. (175-260 mm)
Arterial	Streets that serve traffic from major expressways and carry traffic through metropolitan areas. Truck and bus routes are primarily on these roads.	4,000- 15,000 (minor) 4,000- 30,000 (major)	300-600 700-1,500	6.0 - 9.0 in. (150-225 mm) 7.0 - 11.0 in. (175-275 mm)

Axle	2	Traffic			Maximum Axle Loads (kips)	
Load Category	Description	ADT	ΑC	TT**	Single Ayles	Tandem
outogo. y		AUT	%	Per Day	Single Axles	Axles
1	Residential streets					
	Rural and secondary roads	200-800	1-3	Up to	22	36
	(L to M)			25		
2	Collector Streets Rural and secondary roads (H) Arterial streets and primary roads (L)	700-5000	5-18	40-1000	26	44
3	Arterial streets and primary roads (M) Expressways; urban and rural interstates (L to M)	3000-12,000 2 lane 3000-50,000+ 4 lane or more	8-30	500-5000+	30	52
4	Arterial streets, primary roads, expressways (H) Urban and rural interstates (M to H)	3000-20,000 2 lane 3000-150,000+ 4 lane or more	8-30	1000-8000+	34	60

Axle		Traffic			Maximum Axle Loads (kips)	
Load Category	Description	ADT	ΑC	TT**	Single Ayles	Tandem Axles
		ADI	%	Per Day	Single Axles	
1	Residential streets Rural and secondary roads (L to M)	200-800	1-3	Up to 25	22	36
	Collector Streets					
2	Rural and secondary roads (H)	700-5000	5-18	40- 1000	26	44
	Arterial streets and					
	primary roads (L)					
3	Arterial streets and primary roads (M) Expressways; urban and rural interstates (L to M)	3000-12,000 2 lane 3000-50,000+ 4 lane or more	8-30	500-5000+	30	52
4	Arterial streets, primary roads, expressways (H) Urban and rural interstates (M to H)	3000-20,000 2 lane 3000-150,000+ 4 lane or more	8-30	1000-8000+	34	60

Axle		Traffic			Maximum Axle Loads (kips)		
Load Category	Description	ADTT**		Cinala Aulaa	Tandem		
category		ADT	%	Per Day	Single Axles	Axles	
1	Residential streets Rural and secondary roads (L to M)	200-800	1-3	Up to 25	22	36	
2	Collector Streets Rural and secondary roads (H) Arterial streets and primary roads (L)	700-5000	5-18	40-1000	26	44	
		3000-12,000					
3	Arterial streets and primary	2 lane	8-30	500-	30	52	
	roads (M); Expressways;	3000-		5000+			
	urban and rural interstates	50,000+					
	(L to M)	4 lane or					
		more					
4	Arterial streets, primary roads, expressways (H) Urban and rural interstates (M to H)	3000-20,000 2 lane 3000-150,000+ 4 lane or more	8-30	1000-8000+	34	60	

Axle		Traffic			Maximum Axle Loads (kips)		
Load Category	Description	ADT	ADT ADT		Cinala Avlas	Tandem	
category		AUI	%	Per Day	Single Axles	Axles	
1	Residential streets Rural and secondary roads (L to M)	200-800	1-3	Up to 25	22	36	
2	Collector Streets Rural and secondary roads (H) Arterial streets and primary roads (L)	700-5000	5-18	40-1000	26	44	
3	Arterial streets and primary roads (M) Expressways; urban and rural interstates (L to M)	3000-12,000 2 lane 3000-50,000+ 4 lane or more	8-30	500-5000+	30	52	
4	Arterial streets, primary	3000-20,000 2 lane	8-30	1000-	34	60	
	roads, expressways (H) Urban and rural interstates	3000- 150,000+		8000+			
	(M to H)	4 lane or more					

Axle Load Distributions

Axie load		Axles per 1,000 trucks**				
kips*	9.04	Light residential	Residential	Collector	Minor arterial	Major arterial
			SINGLE AXLE	5		
2.	9	5000				
4	1.6	846.15	1693.31			
6	27	369.97	732.28			
. 8	36	283.13	483.10	233.60		
10	44	257.60	204.96	142.70		
12	53	103.40	124.00	116.76	182.02	
14	6.2	39.07	56.11	47.76	47.73	
16	71	20.87	38.02	23.88	31.82	57.07
18	80	11.57	15.81	16.61	25.15	68.27
20	89		4.23	6.63	16.33	41.82
22	98		0.96	2.60	7.85	9.69
24	107		710.22	1.60	5.21	4.16
26	116			0.07	1.78	3.52
28	126				0.85	1.78
30	133				0.45	0.63
32	142					0.54
2.6	444				1	0.40

TANDEM AXLES						
4	18	15.12	31.90			
8	36	39.21	85.89	47.01		
12	53	48.34	139.30	91.15		
16	71	72.69	75.02	59.25	99.34	
20	89	64.33	57.10	45.00	85.94	
24	107	42.24	39.18	30.74	72.54	71.16
28	125	38.55	68.48	44,43	121.22	95.79
32	142	27.82	69.59	54.76	103.63	109.54
36	160	14.22	4.19	38.79	56.25	78.19
40	178			7.76	21.31	20.31
44	196			1.16	8.01	3.52
48	214				2.91	3,03
52	231				1.19	1.79
56	249					1.07
60	267					0.57

Pavement Property Analysis

Project Traffic Pavement Properties Existing Pavement Analysis New Pavement Analysis Life Cycle Cost				
CONCRETE PAVEMENT Resilient Modulus of the Subgrade (MRSG) (used for both concrete and asphalt designs)	Calculate 3000 psi Help			
Composite Modulus of Subgrade Reaction (k) Design subbase layer system and use calculated k value Add Layers 155 pci Help User-defined k value for existing subbase layer system 161 pci	Coefficient of Variation (COV) Design (MRSG) Adjust Support for Asphalt Design Reliability Help Info*			
Select Concrete Properties 28-Day Flexural Strength (MR) 0 psi Help	*Full-depth design type not available due to MRSG [design] value. Click MRSG help for details. Select Asphalt Pavement Type			
Select Load Transfer Dowels • yes • no Help	Design Type: Choose Type			
Select Edge Support (tied concrete shoulder, curb and gutter, or widened lane) • yes • no Help				

Subgrade Properties

Resilient Modulus of the Subgrade

Soil Type	Support	Resilient Modulus (MR), psi
Fine-grained with high amounts of silt/clay	Low	1455-2325
Sand and sand-gravel with moderate silt/clay	Medium	2500-3300
Sand and sand-gravel with little or no silt/clay	High	3500-4275

Subgrade Properties

Subgrade Soil Types and Approximate k-Values

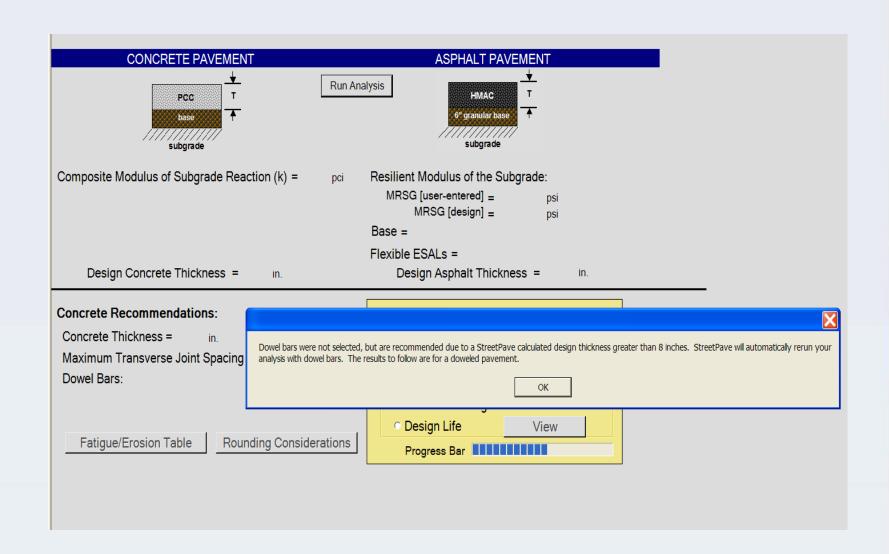
Type of Soil	Support	k-value range
Fine-grained soils in which silt and clay-size particles predominate	Low	75 - 120 pci (20 - 34 MPa/m)
Sands and sand-gravel mixtures with moderate amounts of silt and clay	Medium	130 - 170 pci (35 - 49 MPa/m)
Sands and sand-gravel mixtures relatively free of plastic fines	High	180 - 220 pci (50 - 60 MPa/m)

Project Specific Variables in StreetPave

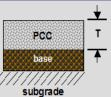
- Variables which can be optimized for specific projects
 - Subbase type, thickness and strength (composite k)
 - Concrete properties
 - Modulus of rupture (MR)
 - Elastic modulus (related to MR)
 - Load transfer type
 - Edge support conditions

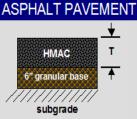
Design Example For Sensitivity Analysis

 The following input values were used to establish a baseline pavement design.


The corresponding k-value before adding s	ubbase	
	er(s) is:	155 pc
To determine the k-value for a subbase layer system, use tool below. First input the subbase(s) resilient modulus a Next, click the calculate k-value button.		
Step 1 - From the Top Down, Input Subbase(s) Res Thickness	ilient Modu	llus and
Number of subbase layers between subgrade and concrete pavement:	/er	•
Top Layer Unbound Compacted Granular Materials (sand/grave)	L crushed stone	•) •
Resilient Modulus of Subbase M RSB Allowable Range: 15,000 - 45,000	25000	psi
Thickness of Subbase	6	in.
Layer 2 Choose Layer		+
Resilient Modulus of Subbase M RSB Alllowable Range: Choose Layer Type	0	psi
Thickness of Subbase	0	in.
Layer 3 Choose Layer		¥
Resilient Modulus of Subbase M RSB Alllowable Range: Choose Layer Type	0	psi
Thickness of Subbase	0	in.
		pci

CONCRETE PAVEMENT	ASPHALT PAVEMENT
Resilient Modulus of the Subgrade (MRSG) (used for both concrete and asphalt designs)	Calculate 3000 psi Help
Composite Modulus of Subgrade Reaction (k) Design subbase layer system and use calculated k value Add Layers 182 pci Help User-defined k value for existing subbase layer system 161 pci	Coefficient of Variation (COV) Design (M _{RSG}) Adjust Support for Asphalt Design Reliability Help Info*
Select Concrete Properties 28-Day Flexural Strength (MR) 600 psi Help	*Full-depth design type not available due to MRSG [design] value. Click MRSG help for details. Select Asphalt Pavement Type
Elasticity (E) 4050000 psi Help	Design Type: Asphalt with 6" Granular Base
Select Load Transfer Dowels yes no Help	HMAC T
Select Edge Support (tied concrete shoulder, curb and gutter, or widened lane) yes no Help	6" granular base subgra de





Run Analysis

Composite Modulus of Subgrade Reaction (k) = 182 pci

Top Layer = Unbound Compacted Granular Materials 6

Resilient Modulus of the Subgrade:

MRSG [user-entered] = 3000 psi

MRSG [design] = 2040.6 psi

Base = 6 inch Granular Base

Flexible ESALs = 4,144,884

Design Asphalt Thickness = 13.88 in.

Design Concrete Thickness = 7.95 in.

Concrete Recommendations:

Concrete Thickness = 800 in

Maximum Transverse Joint Spacing = 15 ft.

Dowel Bars: Use dowel bars with 1.25 in. diameter

Fatigue/Erosion Table

Rounding Considerations

View and Print Reports

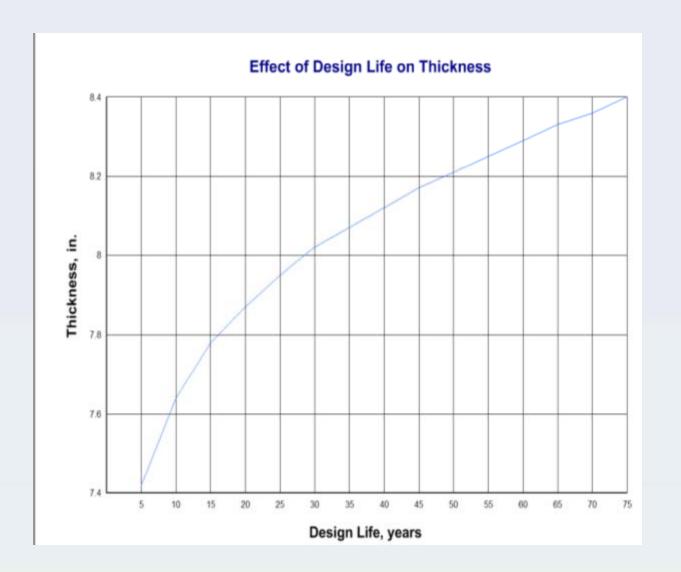
Design and Analysis Summary

Sensitivity Analysis of:

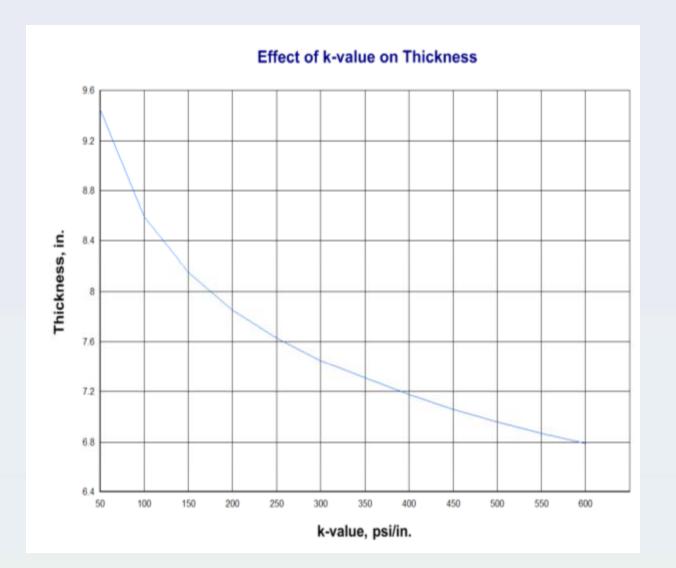
- k-value
- Reliability
- Concrete Strength
 % Slabs Cracked
- Design Life

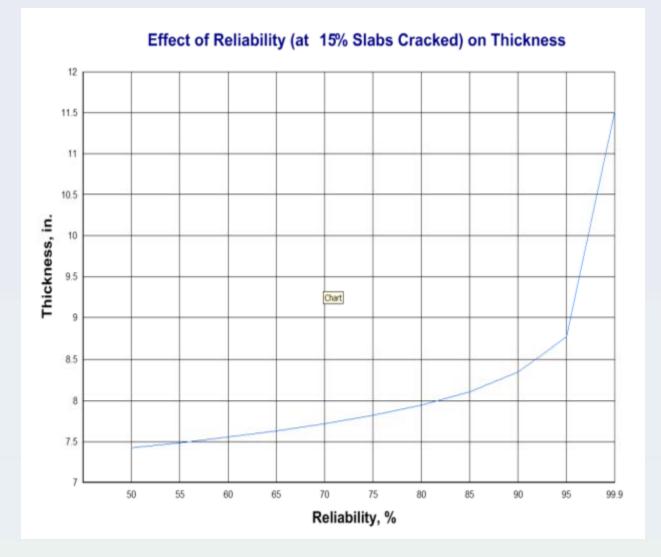
View

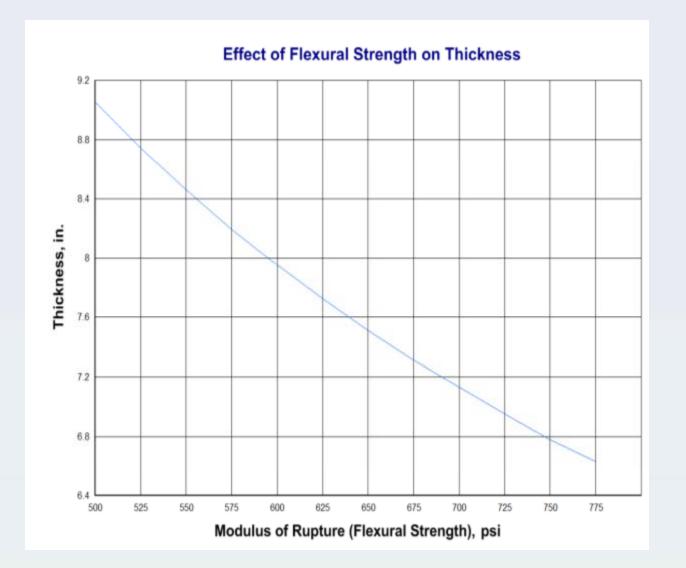
Progress Bar

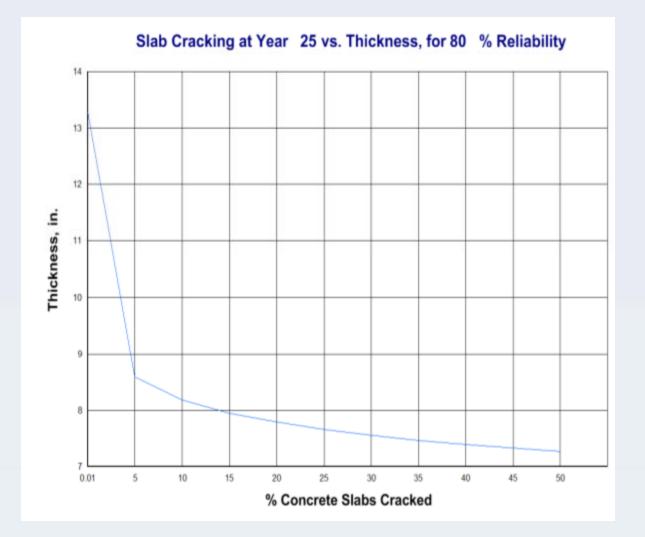


CONCRETE PAVEMENT	ASPHALT PAVEMENT
Resilient Modulus of the Subgrade (M _{RSG}) (used for both concrete and asphalt designs)	Calculate 1940 psi Help
Composite Modulus of Subgrade Reaction (k) Design subbase layer system and use calculated k value Add Layers 100 pci Help User-defined k value for existing subbase layer system 161 pci	Adjust Support for Asphalt Design Reliability Coefficient of Variation 38 % Help (COV)
Select Concrete Properties 28-Day Flexural Strength (MR) 600 psi Help Modulus of Elasticity (E) 4050000 psi Help	Design (M _{RSG}) 1319.56 psi Info* *Full-depth design type not available due to MRSG [design] value. Click MRSG help for details. Select Asphalt Pavement Type Design Type: Choose Type
Select Load Transfer Dowels yes ono Help Select Edge Support (tied concrete shoulder, curb and gutter, or widened lane) yes ono Help	

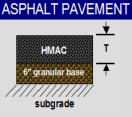








CONCRETE PAVEMENT	ASPHALT PAVEMENT
Resilient Modulus of the Subgrade (MRSG) (used for both concrete and asphalt designs)	Calculate 3000 psi Help
Composite Modulus of Subgrade Reaction (k) Design subbase layer system and use calculated k value Add Layers 182 pci Help User-defined k value for existing subbase layer system 161 pci	Adjust Support for Asphalt Design Reliability Coefficient of Variation 38 % Help (COV) Design (MRSG) 2040.55 psi Info*
Select Concrete Properties 28-Day Flexural Strength (MR) 600 psi Help	*Full-depth design type not available due to MRSG [design] value. Click MRSG help for details. Select Asphalt Pavement Type
Modulus of Elasticity (E) 4050000 psi Help	Design Type: Asphalt with 6" Granular Base
Select Load Transfer Dowels yes ono Help Select Edge Support (tied concrete shoulder, curb and gutter, or widened lane) yes ono Help	HMAC T 6" granular base subgrade



CONCRETE PAVEMENT

Т PCC subgrade

Run Analysis

Composite Modulus of Subgrade Reaction (k) = 182 pci

Top Layer = Unbound Compacted Granular Materials 6

Resilient Modulus of the Subgrade: MRSG [user-entered] =

3000 psi

MRSG [design] = 2040.6 psi

Base = 6 inch Granular Base

Flexible ESALs = 4,203,798

Design Asphalt Thickness = 13.90 in.

Design Concrete Thickness = 6.83 in.

Concrete Recommendations:

Concrete Thickness = 7.00 in.

Maximum Transverse Joint Spacing = 14 ft.

Dowel Bars: Dowels are not recommended.

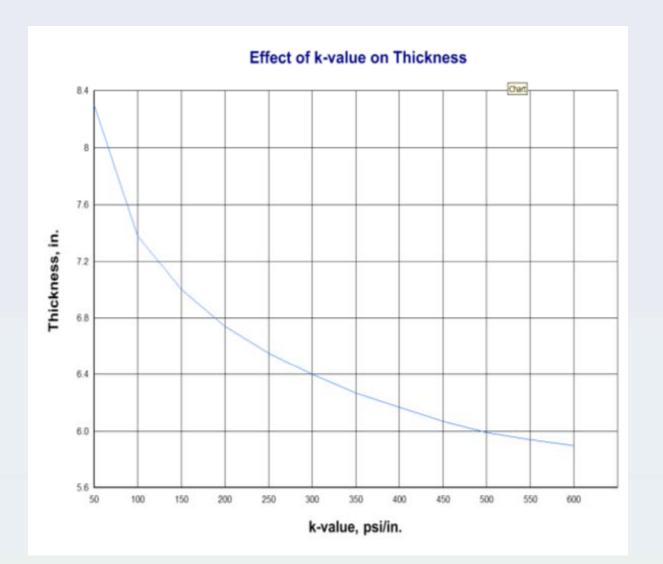
Fatigue/Erosion Table

Rounding Considerations

View and Print Reports

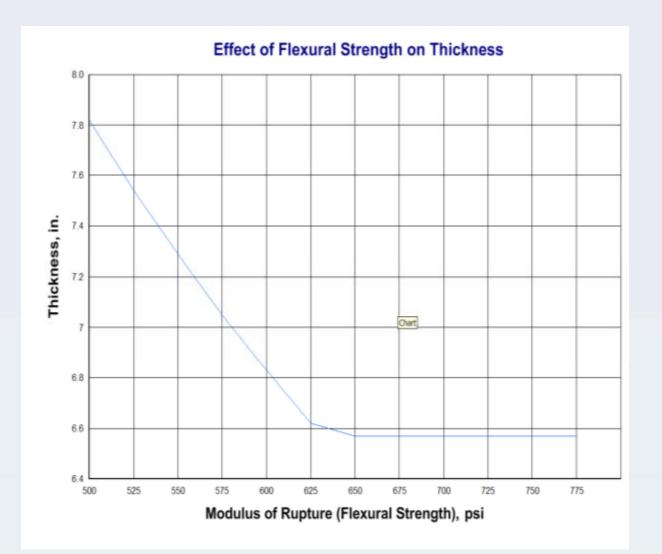
Design and Analysis Summary

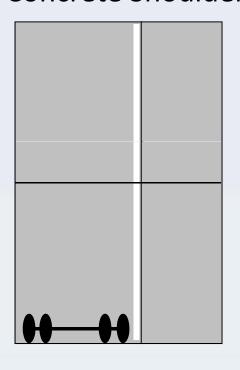
Sensitivity Analysis of:


- o k-value
- Reliability
- Concrete Strength
 % Slabs Cracked
- Design Life

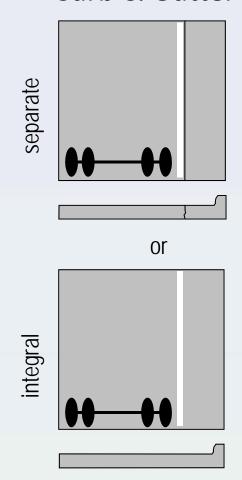
View

Progress Bar

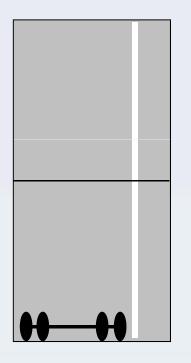



Subbase & Subbase Considerations

- Subgrade strength is not critical to thickness design.
- Subbase materials can be used to significantly change the composite support value (k).
 - Subgrade: k 100 psi/in.
 - Granular subbase: k 150 psi/in.
 - Asphalt treated subbase: k 300 psi/in.
 - Cement treated/lean concrete subbase: k 500 psi/in.



Methods for Providing Edge Support

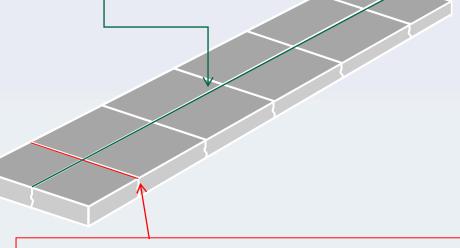

Concrete Shoulder

Curb & Gutter

Widened Lane

Dowel Recommendations

- Dowel recommendations:
 - Not recommended if pavement thickness is 7 in. or less.
 - Use 1 in. dowels, stabilized subgrade, or 4 to 6 in subbase if pavement thickness is 7.0 in. & 7.5 in.
 - Use 1-1/4 in. dowels if pavement thickness is 8 in. or greater.



Jointing Considerations

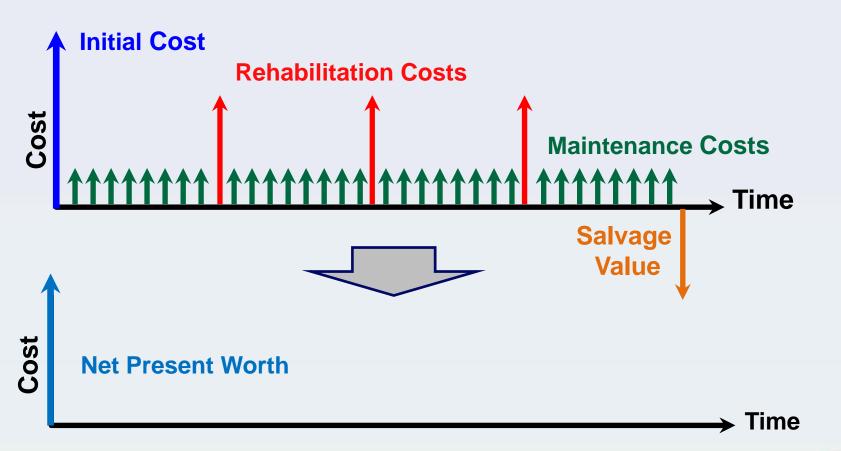
- Control transverse and longitudinal crack from internal slab stresses.
- Divide pavement into construction lanes or increments.
- Accommodate slab movements.
- Provide load transfer.

Longitudinal Joints

Divides pavement lanes (8-14 ft.)
Depth 1/4 to 1/3 pavement thickness

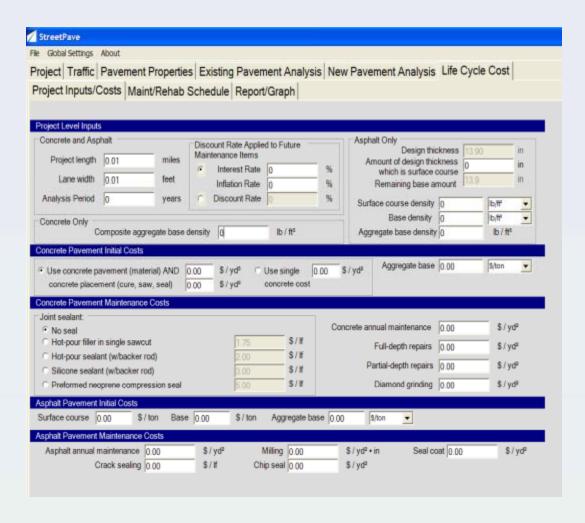
Transverse Joints

Transverse Contraction Joints (8-20 ft.)
Depth ¼ - 1/3 pavement thickness

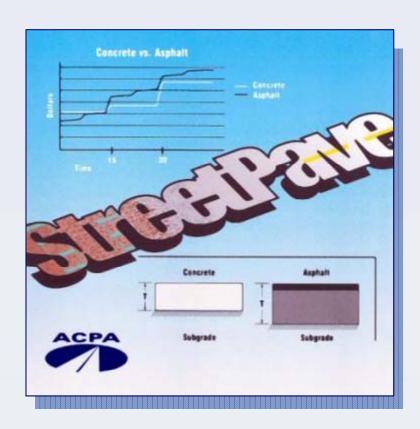

Now What?

- With a baseline design as shown, these steps can optimize the pavement design:
 - Life cycle cost analysis.
 - Performance expectations.
 - Available budget.
 - Availability of qualified contractors.
 - Constructability.
 - User costs.

Life-Cycle Cost Analysis


Combines all present and future costs (benefits)

Life-Cycle Cost Analysis



Finding StreetPave

Where to find StreetPave

- Available in two formats
 - Full-feature Windows®
 version in available from
 ACPA website at
 www.acpa.org/bookstore
 - Free, limited feature webbased version on ACPA's website at www.acpa.org/
 StreetPave/index.asp

What's Next for StreetPave?

Watch for new version coming in the 4th Quarter 2010

- New capabilities for thin concrete overlays
- New sustainability inputs

Thank You!

More information at 847.966.2272 | www.acpa.org 888-84NRMCA (1.888.846.7622) | www.nrmca.org

