Engineering Pervious Concrete Stormwater Systems

Stu Schwartz PhD Senior Research Scientist UMBC

2015 Building Green with Concrete Workshop Wetland Studies and Solutions 21 October 2015 Gainsville, VA

Overview

Inlet to Stormwater System
Design – Structural & Hydrologic
Construction & Placement
State of the Practice & Keys for Success
Routine & Winter Maintenance
New Technologies

Pervious Concrete:

- "No Fines" Concrete Interconnected voids
- Most commonly used in low traffic areas
- Inlet to Stormwater Management System
- Hydrologic Design and Structural Pavement Design

Porosity: Typically 15-25% \pm

Permeability: 60 - >1,000 in/hr

Compressive Strength: 500-4,000 psi

Rob Traver's Instrumented Pervious Concrete Plaza at Villanova University

Villanova Stormwater Partnership www3.villanova.edu/VUSP/

Shoreview MN Woodbridge Pervious Street

Westminster, MD Value Engineering: Saved \$400,000

Shelter Systems

Design and Construction

- Structural Design
- Hydrologic Design
- Good Construction Practices

Cleveland State University

Hydrologic Design: Freeze Thaw & Drawdown

Overdrain to Minimize Pavement Saturation

Underdrain to Provide Positive Drainage & Drawdown

Table 5.5 Effective RCNs for Permeable Pavements					
	Hydrologic Soil Group				
Subbase	А	В	С	D	
6"	76 ¹	84 ¹	93 ²	-	
9"	62^{3}	65 ³	77^{3}	-	
12"	40	55	70	-	
^{1.} Design shall include 1 - 2" min. overdrain (inv. 2" below pavement base) per 750 s.f. of pavement area.					
² Design shall include 1 - 2" min. overdrain (inv. 2" below pavement base) per 600 s.f. of pavement area					
³ . Design shall include 1 - 3" min. overdrain (inv. 3" below pavement base) and a ¹ / ₂ " underdrain at subbase invert.					

Hydrologic Design at Work

1. MTA Park and Ride – 550 parking spaces 1.77 acres pervious concrete

Section

Storage (porosity)

Pervious Concrete: 8" #57 Stone: 4 inches to drain invert, 12 inch total. #2 Stone: ≥ 12 inches Sand: 6 inches

Storage below invert: 6.6"

1.6" (20%) 1.2" (30%) + 2.4" (30%) above invert

3.6" (30%) 1.8" (30%)

24hr-25 year storm: 6.28" 24hr-100 year storm: 8.65"

With subgrade infiltration of 0.5 in/hr section captures and <u>infiltrates the 100 year</u> <u>storm – zero discharge!</u>

Peak wse 1.57 feet

Hydrologic Design at Work

2. PA Pervious Concrete Sidewalk Design

Proposed design:

-520 s.f. pavement	-5,700 s.f. contributing c	Irainage (run-on)
-24 inch subbase	-Total DA = 6,220 s.f.	-0.5 in/hr exfiltration

Fails Freeze-Thaw: 1.2 inch storm saturates pavement

Contrast with No Run-on:

DA = IA 1.5' subbase fully infiltrates 8.5 inch storm!

3. *Pervious Alley* Proposed design: -1,000 s.f. pavers -48 inch subbase

DA:IA = 10:1

-10,000 s.f. contributing drainage (<u>CN=95</u>) - 8-inch underdrain -minimal exfiltration

Exfiltration 0.1 in/hr: ECN 93

Exfiltration 0.52 in/hr ECN 86

Overview

Inlet to Stormwater System
Design – Structural & Hydrologic
Construction & Placement
State of the Practice & Keys for Success
Routine & Winter Maintenance
New Technologies

White Oak LEED Gold Community Center Montgomery County, MD

White Oak LEED Gold Community Center Montgomery County, MD

36" Drained Subbase

White Oak LEED Gold Community Center Montgomery County, MD

Consistent Compaction through Placement

Continuous Placement & Cure

Overview

Inlet to Stormwater System
Design – Structural & Hydrologic
Construction & Placement
State of the Practice & Keys for Success
Routine & Winter Maintenance
New Technologies

State of the Practice for Pervious Concrete

• ACI 522

American Concrete Institute Always advancing

- NRMCA Certification
- NRMCA Education
- ASTM 1688 and 1701
- Specifications

• ACI, PCA, ACPA design software

So what can you do to get it right?

- Get a copy of ACI 522 & the ASTM's
- Have your team get the NRMCA Certification
- Get real field experience
- Educate your team
- Consult an expert!
- Design Assistance

Portland Cement Association

American Concrete Institute

PLA

American Concrete Institute

Fresh Density ASTM 1688

Standard Test Method for Density and Void Content of <u>Hardened</u> Pervious Concrete: ASTM 1754

±5 lbs

Surface Infiltration ASTM 1701

Essentials for Success

- Tight control on batch time may be extended with HSA
- Tight control on placement time 20 minutes
 MAX
- 7 day <u>uninterrupted</u> wet cure
- Tightly secured curing plastic
- Test Panels Testing & Inspection

Specifications

Beyond Hydrologic and Structural design

- ACI 522.1-13 spec (ACI 522R-10/15)
 - Materials Mix Proportions
 - Performance (e.g. 400 in/hr)
 - Constructability Analysis
 - Testing: ASTM 1688 ASTM 1701
 - NRMCA Contractor Certification
 - Test Panels acceptance and reference
 - Maximum Mix (60* min) and Install (20 min) Timing
 - Weather Extremes: Misting, Moisture & Insulating Blankets
 - Inspection and Maintenance
 - ASTM tests in progress

Good Practice & Lessons Learned: Engineering Design - Transition Curb

Overview

Inlet to Stormwater System
Design – Structural & Hydrologic
Construction & Placement
State of the Practice & Keys for Success
Routine & Winter Maintenance
New Technologies

Pervious Concrete Maintenance

- Routine Maintenance vs. Renovation
- Condition-based Maintenance
- Winter Maintenance
- NRMCA Maintenance Guide
- Goal of routine maintenance is to avoid Renovation

NRMCA Maintenance Guide 2015

- Minimum Maintenance Schedule
 - Inspection
 - Cleaning and Stabilization
- Maintenance Levels
 - Routine
 - Periodic
 - Deep Cleaning (Renovation)
- Winter Maintenance
 - <u>Minimize</u> Deicing Chemical Use
 - Polyurethane Plow Blades

Pervious Concrete Pavement Maintenance and Operations Guide

Inspection and maintenance

White Oak Community Center Pervious Concrete Parking Lot

Tests were given a "Leakage" classification from 1-3, depending on the size of the wetted footprint after the test. Leakage can indicate sealing/poor performance

Class 1 – very little/no leakage. Wetted footprint is no larger than the device used

Class 2 – some leakage. Wetted footprint is slightly larger than the device used

Class 3 – severe leakage. Wetted footprint is significantly larger than the device used

Baseline Infiltration Map – White Oak Community Center

215 GPS referenced drawdown tests

> Fast 8-15 sec.

> >100 sec Slow

Pervious Concrete Clogging and Maintenance Montgomery County's White Oak Community Center

Winter Maintenance

De-icing Chemicals Ineffective

Clogging and Maintenance Recap

- Routine Maintenance vs. Renovation
- Manage with a "Clogging Model": Progressive Clogging
- Monitor widely and frequently match the scale of variability
- Match monitoring and maintenance to site conditions
- Condition-based maintenance
- Emphasize Site Design to minimize clogging risk
- Routine Vacuum Sweeping

Overview

Inlet to Stormwater System
Design – Structural & Hydrologic
Construction & Placement
State of the Practice & Keys for Success
Routine & Winter Maintenance
New Technologies

New Technologies & Continual Improvement

- Laser Screed & Machine Placement
- Refined Mix Designs
- Curing Compounds
- Internal Curing Compounds
- Silica Fume
- Fibers
- Titanium Dioxide coatings & nanoparticles.

Conclusion

- Inlet to Stormwater BMP
- Proven Mature Technology
- Proper Design, Construction & Maintenance
- Certified Experienced Professionals
- Expert Assistance & Training Available NRMCA
- Durable Reliable Green Infrastructure Solution

Hydrologic Performance

Urban Heat Island – Rio Verde Arizona

From: <u>Pervious Concrete: Questions Answered</u>. National Center of Excellence on SMART Innovations for Urban Climate + Energy. 17 January 2007

Cuyahoga Sustainability Network

Impervious Caps and Credits

Tropical Storm Katrina Storm Totals: 31Aug 2005 - 07:27 EDT

Condition-based Maintenance

Clogging & Maintenance Effectiveness

Positive Drainage Demonstrate Cold Weather Performance

Pervious Concrete Detention

Site Preparation: Cleveland, OH

Cuyahoga Sustainability Network

Cold Weather Test Plot

Tropical Storm Katrina Storm Totals: 31Aug 2005 - 07:27 EDT

Pervious Pavement

Do

- Site specific design and testing
- Certified contractors
- Routine Monitoring & Maintenance
- Hydration & Mix design
- Full Rapid Curing
- Site Design for Protection
 - Buffer/filter/diffuse run-on
 - avoid particulate loading

Don't

- Saturate Pavement
- Standard Paving Section (6+6)
- Push the mix "tools of the trade"
- Defer maintenance to sealing
- Overload the pavement
- Over finish (sealing)
- Starve the hydration